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This course is for beginners.  No fancy mathematics is used.  We cover a set of topics that are of practical 

importance to many optical systems, with an emphasis on back-of-the-envelope calculations. We start 

with concepts from geometrical optics.  What is image formation?  What determines the size and 

location of the image?  What determines the spatial resolution of the system?  What are F/# and field of 

view?  We then briefly consider Modulation Transfer Function (MTF) – a description of image quality in 

terms of a spatial frequency response. Next is radiometry, with calculations of power transferred to the 

image plane for both resolved and unresolved sources. We then consider thermal sources of radiation 

from the perspective of the Planck equation, which gives the radiated power as a function of wavelength 

for a particular source temperature.  Next, we compare and contrast detectors of optical radiation, both 

thermal sensors and photon sensors. We consider sensor specifications, with an eye toward calculation 

of a signal-to-noise ratio. Finally, the course concludes with the calculation of laser-beam quantities such 

as beam size as a function of distance and wavelength. 
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Detector Footprint 
 

• The detector has a “footprint” – the image of the detector 
onto the object plane – defines the area of the object that 
contributes flux onto the sensor – detector is the field stop. 

• Given lens focal length f and the size of the sensor pixel l, 
you get an idea of the resolution element at the object 
plane. 

• Assume that object distance p is large enough the image is 
formed at f behind the lens. 
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Radiance Example 
 

• For the simplest calculational example of radiance, let the 
 view angle θs = 0. 
 

• Given an extended source of area 1 cm by 1 cm, specified 
by a radiance of 5 W/(cm2 ster).  At a distance of 10 
meters, is a detector of size 1 mm by 1 mm.  How much 
power falls on the detector? 

 

 
 

• First calculate the solid angle of the detector. 
 

Ωd = Ad/r2 = (1 × 10−3 m)2/(10 m)2 = 10−8 ster 
 

• Multiply this solid angle by the area of the source and the 
radiance of the source to obtain the power on the detector: 

 

φd = L × As × Ωd 
 

φd = 5 W/(cm2 ster) × (1 cm)2 × 10−8 ster = 5 × 10−8 W 
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Calculation of Image Irradiance:  Point-Source Imaging 
 

 

• Often the object of interest is effectively a point source – 
one whose size is smaller than the resolution spot projected 
back to object plane – an “unresolved” object. 

 

• Point source is specified in terms of its intensity I (W/ster). 
 

• Total power collected:  φ = I × Ωlens = I × Alens/p2 
 

 
 

• If the lens is diffraction-limited, 84% of φ is concentrated 
into a spot of diameter 2.4 λ (F/#)image-space.  In that case, 
approximate on-axis image-plane irradiance: 
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• Example: R(λ) for a photon sensor – plotted in either 
photon-based or energy-based units. 

 

 
 

• In energy units, the ideal photon detector spectral responsivity 
is linearly proportional to wavelength: 
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• A linear increase in responsivity is seen up to cutoff, since it 
takes more photons/sec to make a watt at long wavelength. 

 

• For historical reasons, photon detectors are often plotted with 
respect to energy-derived units. 
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Specification of Signal-to-Noise Performance: 
Normalized Detectivity, D* 

 

• Normalized detectivity, D* – a figure of merit often used in 
manufacturers’ data sheets to specify detector performance. 

 

• D* is normalized with respect to detector area and bandwidth 
– but in order to predict SNR you must choose the sensor 
area and bandwidth for your application. 
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• D* has units 







Watt

Hzcm , typically large numbers 109 to 1012 

• Definition is in terms of “per Watt,” but sensor typically 
receives much less power than 1 Watt! 

• Inversely proportional to NEP – bigger D* better sensitivity 
• Proportional to square root of detector area 
• Proportional to square root of measurement bandwidth. 

 

• We have seen that rms noise voltage vnoise (and hence NEP) is 
generally proportional to detA and f∆ . 

 

• The way that D* is defined, these dependences cancel out. 
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Beam Propagation Equation 
 

• Find w as a function of z – given wavelength λ and the 
beam waist size w0 set at z = 0. 
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• Identify 
λ

π 2
0w  as the Rayleigh range – the distance at which 

w has increased by a factor of 2 over its initial value w0. 
 

 
 

• Rayleigh range is a measure of the distance over which the 
beam remains approximately collimated. 

 




